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Abstract— The passive dynamic walker described in this paper
is a robot with a minimal number of degrees of freedom
which is still capable of stable 3D dynamic walking. First, we
present the reduced-order dynamic models used to tune the
characteristics of the robot’s passive gait. Our sagittal plane
model is closely related to the compass gait model, but the steady
state trajectory passively converges from a much larger range of
initial conditions. We then experimentally quantify the stability
of the mechanical device. Finally, we present an actuated version
of the robot and some preliminary active control strategies. The
control problem for the actuated version of the robot is interesting
because although it is theoretically challenging (4 degrees of
under-actuation), the mechanical design of the robot made it
relatively easy to create controllers which allowed the robot to
walk stably on flat terrain and even up a small slope.

I. INTRODUCTION

In the late 1980’s, Tad McGeer [1] introduced a class of
walking robots, known as passive dynamic walkers, which
walk stably down a small decline without the use of any
motors. The most impressive passive dynamic walker [2] has
knees and arms, and walks with a surprisingly anthropomor-
phic gait. These machines provide an elegant illustration of
how proper machine design can generate stable and potentially
very energy efficient walking. These ideas, however, are only
beginning to have an impact on the way fully actuated bipedal
robots are designed and controlled (i.e., [3], [4]).

To bridge the gap between passive and active walkers, a
number of researchers have investigated the problem of adding
a small number of actuators to an otherwise passive device
([5], [6], [7])- There are two major advantages to this approach.
First, actuating a few degrees of freedom on an otherwise
passive walker is a way to capitalize on the energy efficiency
of passive walking and the robustness of actively controlled
systems. Second, by allowing the dynamics of the system to
solve a large portion of the control problem, it may be possible
to simplify the control problem that is solved by the actuators.

The goal of this paper is to describe the mechanical design
of our simple 3D passive dynamic walker, and the design
of some preliminary active control strategies that have been
applied to a partially-actuated version of that robot. These
simple controllers were created as a baseline with which to
compare the learned controllers that are the main focus of this
research. They allow the robot to walk on flat terrain, and even
up a small slope.
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The Passive Walker

Fig. 1.

Il. PASSIVE DYNAMIC WALKER

The passive dynamic walker shown in Figure 1 represents
the simplest machine that we could build which captures the
essence of stable dynamic walking in three dimensions. It has
only a single passive pin joint at the hip. When placed at
the top of a small ramp and given a small push sideways,
the walker will rock onto a single stance leg, allowing the
opposite leg to leave the ground and swing forward down the
ramp. Upon landing, the robot rocks onto the opposite foot,
and the cycle continues. A video montage been included in
the proceedings.

The energetics of this passive walker are common to all
passive walkers: the energy lost due to friction and collisions
when the swing leg returns to the ground are balanced by the
gradual conversion of potential energy into kinetic energy as
the walker moves down the slope. A particular challenge with
this walker is the design of its large curved feet. Using only
reduced planar models of its dynamics, we are able to design
feet which tune the step frequency and step length of the robot
to produce an elegant and robust gait.

This walker is morphologically equivalent to the Tinkertoy
walker [8], except that on our robot the center of the radius of
curvature of the feet is higher than the center of mass. Because
of this, standing is a statically stable configuration.



Frontal Plane Model

Fig. 2.

A. Frontal Plane Model

To model the dynamics in the frontal plane, we assume that
the robot is always in contact with the ground at exactly one
point and that the foot rolls without slipping. The equations
of motion, in terms of body angle 6, for this planar model are
given in three parts using the form

H(0) 4+ C(6,6)0 + G(6) = 0.

When |0| > ¢, the ground contact point is in the curved
portion one of the feet (the boundary condition on the outside
of the foot is not modeled), and the dynamics are:

H() =1+ ma® + mR?c —2mRyacosb,
C(0,0) = mRafsin 6,
G(0) = mgasin6.

When |6] < ¢, the ground contact is along the inside edge
of the foot. In this case, the dynamics are:

HO) =1+ ma® + mR?c —2mRyacos(f — ),
C(9,0) =0,
G(0) = mg(asing — Rysina).

where o = 6 — ¢ if § > 0, otherwise a = 6 + ¢.

Finally, the collision of the swing leg with the ground
is modeled as an inelastic (angular momentum conserving)
impulse,

6F =0~ cos [Qtan_l (Rfsuub)} ,
Rycosgp—a
which occurs when 6 = 0.

A simulation of these dynamics produces a damped oscil-
lation that will eventually result in the robot standing in place
(energy lost on impact is not restored). Our primary concern
for this model is the frequency of that oscillation. For a given
mass and moment of inertia, we can change the frequency by
changing R;. The actuated version of the robot, presented in
section I1l, carries its mass very differently than the purely
passive version of the robot, due to the added mass motors
and sensors. By simulating this model, we were able to find
very different radii for the feet in the frontal plane that allow

Fig. 3. Sagittal Plane Model

different versions of the robot to both oscillate back and forth
with the desired step frequency of approximately 1.4 Hz. The
newest version of our actuated walker is considerably heavier
because it carries the computer and batteries on board, so we
reduced the desired step frequency to 0.8 Hz for this robot.
B. Sagittal Plane Model

In the sagittal plane, the dynamics are a slightly modified
version of the well-studied compass gait [9]. The parameters
of this model can be found in Figure 3, and the dynamics are
given by:

H(q)q+ C(q,9)q+ G(q) = 0,

where q = [0, 05,] 7, and:
Hyy =1 +myb* + myd?® 4 2myR? — 2my R, (b + d) cos (04 — )
H12 :H21 = ml(b — d)[dCOS(est - st) - Rs Cos(esw - 7)]
Hao =1 + my(b— d)?,

1 .
C11 =myRs(b+ d) sin(fs; — v)0st + §mld(b —d) sin(fgs — Os) s
1

Cio =my(b — d)[dsin(0s; — Ose) (Bsrs — 5ést) + Ry sin(fse — 7)0sw]
. 1. 1 .
Ca1 =my(b— d)[dsin(0s; — Osw) (05t — 59571,) — §RS Sin(Bsy — ¥)Osw)

1
Cos :§ml(b —d)[dsin(fst — v) + Rs sin(0sy — 7)]0st

Gy =myg(b+ d)sin s — 2mygR, siny,
Go =myg(b— d)sinOsy,.

The abbreviation st is shorthand for the stance leg and sw for
the swing leg.

As with the compass gait model, we assume the swing foot
can swing through the ground. Only the transfer of support as
the swing leg becomes stance leg is modeled as a collision.
Because our model has large curved feet rather than point
feet, some portion of the swing foot remains below the ground
for the portion of the swing phase after the swing leg moves
past the stance leg. Therefore, we are not able to model the
time of collision as the time of the second impact. Instead,
using the output of the frontal plane model, we estimate that a
collision occurs once every half period of the roll oscillations.



At this moment, the collision is again modeled as an angular
momentum conserving impulse:
2 (q)q" =2 (@)q7,
where
O =2bd cos(0syy — 0s5¢) — (b + d)Rs cos(0sy — )
— 2bR, cos(fst — ) + 2R + b* — bd
Qpp =05 = (b—d)(b — R cos(Osw — 7))
05, =0
Qf, =(b—d)[dcos(0s; — Os) — Rscos(fse — ) + (b — d)]
Qf, = — Ro(b—d)cos(0st — ) — Rs(b + 2d) cos(0sy — )
+d? + 2R% + R,bcos(0sy + 7) — b% cos(204.)
+d(b—d)cos(0st — Osy)
Q) =(b - d)?
Q;rz =(b—d)(dcos(Ost — Osy) — Rs cos(bst — )

This simulation generates stable trajectories (see Figure 4)
that are extremely similar to those generated by the compass
gait (compare with [9], [4]), except that they are much more
stable. Our dynamics do not model the edges of the feet, so
our simulation actually models a passive walker shaped like
two halves of an ellipsoid. Nevertheless, we have not been able
to find any initial conditions from which the system does not
return to a stable gait. Figure 4 was generated using the initial
conditions with all variables set to zero and a slope of 0.027
radians, which is approximately the starting configuration that
we use on our passive walker.
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Fig. 4. Limit Cycles in the Sagittal Plane Model. 0; p;+. is the pitch angle
of the left leg, which is recovered from 65; and 05, in the simulation with
some simple book-keeping.

The step length and the forward velocity of the steady state
gait can be tuned by adjusting the radius of curvature, R;.
Smaller radii cause the robot to fall forward more quickly. For
the slope of 0.027 radians, a simulation of our model predicts
that our robot will take steps of 2.56 inches (6.50 cm) and
walk with an average forward velocity of 8.81 inches/second
(22.38 cm/s).

Simulations of the frontal and sagittal plane models, com-
plete with the parameter values used to generate these plots,
are available on the web [10]. A simulation of the full 3D
dynamics will be available there soon.

C. Experiments

The planar models are tools for designing the curvature of
the feet to approximately tune the step frequency and step
length of our robot. The coupling between these models is
more complicated, and we are currently studying them in
a simulation of the full 3D dynamics. The most important
characteristic of this coupling is that energy from the sagittal
plane stabilizes oscillations in the frontal plane. Consequently,
we should expect to observe smaller steps than that predicted
by the sagittal plane model.

Using the curvature of the feet in the frontal (R;) and
sagittal (R,) planes determined from the planar models, we
machined experimental feet on our CNC milling machine. The
surface of the feet are given by:

z=/R} —2* = Ry +/RZ —y? - R,.

Using these feet, our robot produces stable periodic trajectories
when placed on a small decline. Figure 5 demonstrates this
stability with a sample trajectory of the machine walking down
a slope of 0.027 radians. 6,..;; is the roll angle of the robot
body, in radians, which was simply called # in the frontal
plane model. This data was actually recorded from the actuated
version of the robot with its ankle joints mechanically locked
in place.
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Fig. 5. Passive Walking Experiments. The top figure plots the raw (unfiltered)
yaw, pitch, and roll sensors for walking down a slope of 0.027 radians. The
bottom figure is the state space plot of the resulting limit cycle in the roll
axis, low-pass filtered at with a cut-off at 8 Hz.

The limit cycle displayed in Figure 5 is fairly typical. Notice
that the initial conditions for the robot are slightly outside
the steady state trajectory, but that trajectories converge to a



very reproducible cycle in roll and pitch. The robot has an
uncompensated moment about the yaw axis - it will twist and
turn whenever the point contact of the foot slips on the ground.
This can be seen in the wandering trace of the yaw variable.

Upon close inspection, we determined that the majority of
the noise visible in our unfiltered data is actually due to a
mechanical vibration of the leg at approximately 10 Hz. For
this reason, we have decided to low-pass filter our limit cycle
plots at 8 Hz with a 4th-order Butterworth filter (sampling rate
is 100 Hz).

D. Local Sability Analysis

The local stability of the passive walkers is traditionally
quantified by examining the eigenvalues of the linearized step-
to-step return map [1], taken around a point in the period either
immediately preceding or immediately following the collision.
While we are currently designing a foot contact switch that
will not interfere with the curved feet of the robot, the return
map for this analysis is evaluated through the hyperplane
001 = 0, when 6,.,;; > 0. The point in the cycle when the
robot passes through the vertical position in the frontal plane
is the expected point of impact.

The state of our passive robot is described by 4 variables
(Oyaw: BipPitch, Orpitch, Orou) and their derivatives, therefore
the return map has dimension 7. [ Pitch is short for left leg
pitch and rPitch is for the right leg pitch. To evaluate the
eigenvalues of the return map experimentally on our robot,
we ran the robot from a large number of initial conditions and
created the vectors x; 7 x 1 vectors which represent the state
of the system on the :th crossing of the jth trial. For each trial
we estimated x7, the equilibrium of the return map. Finally,
we performed a least squares fit of the matrix A to satisfy the
relation

(xé."'1 — x}k) = A(xé — x;‘)

This was accomplished by accumulating the data from all trials
into matrices

(1 * 2 *
X =[x — x7,x] — X}, ...

__[2 * 2 *
Y =[x] — x7,x] —XJ,...

Xy — X5, ...]

,Xg - X;7 . ]
and computing
A =YXT(xXXT)1,

After 63 trials with the robot walking down a ramp of 0.027
radians, our linear approximation of the return map had the
following eigenvalues: 0.88, 0.87, 0.75, 0.70, 0.34+0.114. 61
trials with on a slope of 0.035 radians produces very similar
eigenvalues (0.88, 0.70, 0.43 +0.014, 0.36 4+ 0.08¢, 0.21). We
have also studied the associated eigenvectors, but find them
difficult to interpret since they are sensitive to the units and
scale of our data. The largest eigenvalue of 0.88 indicates that
this system is locally stable.

The distribution of equilibrium trajectories was unimodal
and narrow for both slopes (examined separately). We believe
that most of the variance in the distribution of equilibrium
trajectories can be accounted for by sensor noise, small

Fig. 6. The Toddler Robot

disturbances, and changes in the effective ramp angle when
the robot yaws to one side or the other.

E. Domain of Attraction

In practice, the robot can be initialized from a large range
of initial conditions and can recover from relatively large
perturbations. Because the return map has some eigenvalues
close to 1, this recovery takes many steps. Walking trials are
nearly always started with the robot tilted sideways to a non-
Zero B,y position but with 04, 01 pitch, and 0, piien close to
zero. It is not necessary to give the robot any initial forward
velocity.

When started in this configuration, one of three things
happen. If |0,..;;] is too small, approximately less than 1.25¢,
then the robot will converge to a stable fixed point at 6,.,;; =
Orory = 0. If 2¢ < |0,0n| < 1, where ¢ is the angle at
which the center of mass of the robot is directly above the
outside edge of the foot, then the robot returns to a stable gait.
For larger |6,.1|, the robot falls over sideways. On our robot,
¢ = 0.03 radians and ¢ = 0.49 radians, which makes for a
very large basin of attraction in this dimension. Compare this
with the predictions of the compass gait model, which must be
initialized much closer to the steady state trajectory in order
to produce stable walking.

I1l. TODDLER - THE ACTUATED VERSION

In order for the robot to walk on the flat, it must actively
restore the energy lost during impact. One candidate active
control strategy would be to apply torques at the existing
hip joint, but it may be difficult to actuate the hip without
disrupting the basic passive gait. On the robot shown in
Figure 6, the hip joint is passive, but we have added two
active joints (pitch and roll) at each ankle. We call this robot
“Toddler” because the word is normally used to describe a
child during the time that they are learning to walk, and this
robot is primarily designed to investigate learning algorithms
for dynamic walking. The name is also appropriate because
the robot literally toddles back and forth when it walks.

Toddler’s four active degrees of freedom are actuated by
servo motors through mechanical linkages. They are config-
ured so that when the motors are commanded to hold their



zero position, the robot simulates the passive walker. The
robot is also equipped with a two axis gyroscopic tilt sensor
(measuring 0;p;icr, and 6,.;;), three rate gyros (measuring
Oyaw, Orpiten and 6,,), and two potentiometers at the hips
to measure the relative hip angles. Notice that this machine
has one more degree of freedom than it’s passive counterpart,
which we call 6,p;:.n, Or body pitch. The body has a center
of mass below the hip, so it hangs passively, and primarily
contains an embedded PC/104 stack with a 700 MHz processor
which runs the control algorithms. Power is supplied by
lithium polymer battery packs.

By assuming that the robot is always in contact with the
ground, we can describe the generalized state of this robot
with 5 variables (0yq.w,01 pitch OvPitch, Or Pitch, Oron) Plus their
derivatives. Because the robot only has four actuators, it is
clearly an under-actuated system. The challenge is to produce
a control strategy for the ankle actuators which (directly or
indirectly) controls all 5 degrees of freedom.

To solve this problem, we first focus our attention on
stabilizing the oscillation in the frontal plane. The frontal plane
model is a simplification of the dynamics of the robot on a
ramp, but it is also a reasonable representation of the robot’s
dynamics when it is placed on a flat surface. The frontal plane
model for the actuated version can be written as:

H(q)4 + C(q,q9)q + G(q) = u,

where q = [0, 0,4,0,4]7 and u = [0, w4, o). The abbrevi-
ations la and ra are short for left and right ankle, respectively.
The impact model can be written as

Q (a)g" =2 (@)q".

At each collision with the ground, the kinetic energy of the
system, T', changes by:

AT = %QT [Q(a)"H(q)2(q) — H(q)] 4.

where = (27)~71Q~. In order to stabilize the oscillations,
the control torques, u, must restore the energy lost from
these collisions. In the following sections, we will discuss
two simple actuation strategies that have already been applied
successfully to the robot.

A. Feed Forward Ankle Trajectories

The first actuation strategy that we experimented with use
the idea of coupled oscillators. The mechanical system in
the frontal plane is a damped oscillator. If we produce a
second oscillator in the control system which could entrain the
dynamics of the mechanical oscillator, then the result would
be stable walking. For simplicity, we started this experiment
by considering only one-way coupling: a feed-forward control
system which forces the mechanical oscillator.

The ankle servos are PD controllers which follow a refer-
ence trajectory. The oscillator is simply:

0% =asin(2nwt)

d __ d
ela - 97‘@

Whether or not the robot’s dynamics could entrain to the dy-
namics of the controller depended on the relationship between
the controllers frequency, w, and the passive step frequency of
the robot. Surprisingly, the best entrainment occurred when the
controller was a little slower than the passive step frequency
(w = 0.55 for our robot stepping at 0.8 Hz). We believe that
the success of this simple controller can be attributed to the
mechanical design of the robot.
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Fig. 7. Example Feed forward Limit Cycle

Local stability analysis of the limit cycles generated by the
feed forward controller suggests that this controller is more
stable than the passive system. The eigenvalues of the return
map evaluated from 89 trials on flat terrain were 0.80, 0.60,
0.49 4+ 0.044, 0.36, 0.25, 0.20 + 0.014, 0.01. Practically, this
controller converges from a large region of state space, but
is very sensitive to disturbances in phase. The robot must be
initialized in phase with the controller, and relatively small
perturbations can knock it out of phase.

B. Feedback Ankle Trajectories

A more direct approach to stabilizing the roll oscillations
is to build a controller which, on every cycle, injects exactly
the amount of energy into the system that was lost during that
cycle. Even simpler is the idea implemented by Marc Raibert’s
height controller for hopping robots ([11], [12]): if we inject
a roughly constant amount of energy into the system during
every cycle, then system will settle into a stable oscillation
with an amplitude that is monotonically related to the energy
injected.

Our heuristic for injecting a roughly constant amount of
energy on each cycle is implemented using a state machine
with only two states. The right ankle is given by:

b {0.08 rad if 0,,; > 0.1 rad and 6,,;; > 0.5 rad/s

0 rad otherwise,

and the left ankle controller is symmetric. With this state
machine, as the robot rolls from an upright position onto one
foot, it crosses a threshold position and velocity at which the
stance ankle is servo-ed by a small fixed amount, causing
the robot to accelerate further in the direction that it was
moving. As the robot is moving back toward the upright
position, the ankle is servo-ed back to the original zero
position, which further accelerates the center of mass toward



the upright position. Both ankles are at the zero position at
0,011 = 0 in order to minimize the energy lost by the collision
with the ground. The desired angle in the non-zero state is
monotonically related to the resulting amplitude of oscillation.
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Fig. 8. Example Feedback Limit Cycle. This trajectory demonstrates a
gradual convergence from small initial conditions.

The local stability analysis of this controller reveals that
this controller converges more quickly than both the feed-
forward controller and the purely passive device. After 58 trials
on flat terrain, our linear return map analysis produced the
eigenvalues: 0.78, 0.69+0.034, 0.44, 0.36+0.04¢, 0.134+0.063,
0.13. Practically, this controller is very stable. It is able to
recover from very large disturbances, and from very small
initial conditions.

C. Ve ocity Control

We control the dynamics of the sagittal plane independently
using a simple velocity control algorithm. The robot walks in
place when the center of mass of the entire robot is directly
above the point of contact between the foot and the ground.
When the center of mass is out in front of the ground contact
point, the robot will lean forward. As soon as one leg leaves
the ground, the passive joint at the hip allows it to swing
forward, and the robot begins walking. This happens naturally
when the robot is on an incline. The farther the center of mass
is from the ground contact point, the faster the robot will move
in that direction. On Toddler, the operator specifies the desired
forward speed by joystick, and the corresponding placement
of the center of mass is controlled by actuating the ankle pitch
actuators. The heuristic makes it easy for Toddler to walk on
flat terrain, and even up small inclines. For large changes in
slope, the gains of the roll stabilizing controllers must also
adapt.

The direction of the robot can also be controlled, to a limited
degree, by differentially actuating the right and left ankles
(either pitch or roll). Currently, the yawing of the robot due
to momentum of the swing leg and slipping on the stance leg
limit the controllability of the robot’s heading. Future versions
of the robot will have arms to compensate for this yaw, and
should be able to turn more accurately.

V. CONCLUSIONS AND FUTURE WORK

The passive dynamic walker presented in this paper has
only a few degrees of freedom, but it is capable of stable

3D dynamic walking. The dynamics are simple enough that
they can be fully modeled and understood. We have presented
the preliminary modeling work, which considered the frontal
and sagittal planes individually, and are currently studying the
three dimensional dynamics to better understand the coupling
terms.

The control problem for the Toddler robot is interesting
because although it is theoretically challenging (4 degrees of
under-actuation), the mechanical design of the robot made it
relatively easy to create controllers which allowed the robot
to walk stably on flat terrain and even up a small slope. This
feature of the robot makes it an excellent platform for studying
machine learning control strategies, which is the true focus of
our project. The simple controllers presented here are being
used as baselines with which we can compare the performance
of our learned controllers. In the future, we would also like to
implement more elegant model-based, under-actuated control
strategies that might allow for improved active control of step
length and step frequency, and possibly allow the robot to walk
over rough or intermittent terrain.
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