
Picking the right encoder interface is often forced by the controller it hooks up

to and the simple digital quadrature interface is by far the most common for relative

encoders. This interface simply pulses at the rising and falling edge of the encoder

lines, leaving counting to the user. An absolute encoder needs to send a unique signal

depending on where the code wheel is, so they often use parallel or serial connections

that are much more complex. They are also often available with analog voltage out, as

though it were a potentiometer, or with a variable duty cycle pulse width modulated

signal. These two options, while easier to interface with, have large issues in most

cases. The analog connection is susceptible to noise, an encoder with 1000 counts

that makes a 5V max signal will have signal all the way down to 5mV, and that’s a

very low count encoder. Pulse width modulated signals are limited to the balance of

update rate and clock accuracy. The faster the encoder sends updates the less time

it has for the period of its signaling square wave. A 1000 count encoder updating at

1000hz would require 1 microsecond clock resolution to read. On the plus side, both

of these interfaces only require a single signal wire and a ground, this may be very

appealing if trying to work through a slip ring.

The encoder we ended up using is the AEDA-3300 from Avago. This encoder

offers a unique combination of a large variation of available tick counts, 2400 to

80000 counts per revolution in a very small lightweight, and inexpensive package

with its own integrated bearings. This means that the sensor can be used in almost

any application on a robot which makes it a great part to design around. The only

thing it doesn’t offer is its own housing, but that is easy to deal with after the fact.

2.1.4 Terrain Sensing

Figuring out the angles of the robot’s links is only half the battle in establishing the

state of the whole system. It’s vitally important to know which leg is the stance

leg and what the world around the robot looks like. Depending on which leg is the

stance leg the direction that torque needs to be applied in changes sign because of of

how the chain is connected to the ground. One very important facts we learned early

in experimenting with walking controllers on the robot is that thinking you’re on

31



the wrong stance leg puts many controllers into positive feedback, meaning that the

actuator applies the limiting torque almost instantly, completely ruining any control

that had been going on before things went wrong. We’ll see later on that this has

implications for time indexed controllers.

The stance leg detector went through multiple iterations depending on the hard-

ware configuration of the robot. The initial plan was to have the series elastic actuator

toes read the amount of force on them, expecting the robot to always have more weight

on the leg it’s standing on and so should provide a reliable indication of the stance

leg. This turned out to be a bad assumption, not because that statement is false,

but because the weight of the robot under static conditions doesn’t actually move the

springs in the feet. The stiffness of springs and amount of preload required to make

the toe action not too spongy under dynamic conditions turns out to make the static

readings from the sensors useless. This was overcome by looking at impacts instead

of static conditions. Any impact, even very small, produces distinct readings from

the load cells which provide the indication that the stance leg has changed. Knowing

which leg the robot was previously on makes this enough information to determine

the stance leg throughout time, but this strategy isn’t tolerant of errors, an errant

impact detection can make the stance leg decision wrong for a long time. There’s a

little bit more information available though, that’s an occasional indication of which

leg the robot is on under dynamic conditions in mid step. Even though static con-

ditions aren’t enough to exercise the springs the robot often undergoes accelerations

without impacts that are enough to trigger a positive stand leg identification. If this

information is used to affirm the stance leg choice from the impact detector then the

wrong leg is chosen extremely rarely, in fact once this strategy was implemented the

only errors ever made were from hardware failures.

A Hokuyo UTM-30LX scanning laser rangefinder is also used to sense terrain.

It’s mounted in plane with the robot’s walking plane, making the single scan line

the sensor produces capable of describing all relevant terrain to the robot. While

originally intended for the purpose of picking up rough terrain the sensor ended up

also being extremely useful on flat ground. The small amount of drift the IMU picks

32



up is simple to eliminate using the range estimates from the laser scanner if most of

the ground is known to be flat which is the case in many of our experiments. The

sensor provides millimeter resolution and repeatability up to 10 meters away and

scans in 0.25 degree steps at 40Hz providing a deluge of scan points which a line can

be fit to to produce a ground estimate. Knowing the laser scanner provides absolute

truth but at a slow rate compared to the IMU, this data combined with the IMU

attitude estimate in the robot’s state observer using a slow zeroing filter. The zeroing

filter maintains a state which is the difference between the two raw sensor readings

after being passed through a first order low pass filter with a time constant on the

order of several seconds.

2.2 Mechanical Design

2.2.1 Feet

The robot’s feet serve a few purposes. The simple compass gait model assumes that

the swing leg has some way of avoiding hitting the ground as it swings through, so

some way of making the legs shorter during swing is necessary. In addition to that, it

could be helpful if the same mechanism could be used to push off from the ground to

add energy or if the actuators could do some crude ground speed matching in order

to slow down the dynamics of the impact.

Not much of an actuator is required if the only job to accomplish is shortening

the leg during the swing phase. Previous iterations of compass gait robots at the

lab have used linkages with weak but fast motors which allow the link to extend and

retract quickly and lock into place in the extended position, but this strategy doesn’t

work when the actuator is used to actually apply a force to the rest of the robot. A

good alternative to the locking linkage is a lead screw which also has a resistance to

backdriving, but doesn’t have the same nonlinearities of the four bar linkage, it’s able

to operate in the same way at point in its range.

Another design consideration which lends itself to the lead screw is the integration

33



Figure 2-7: Concept drawings for the robot’s toe actuators. Lead screw design on the
left and cable drive on the right.

of a series elastic element. The series elastic actuator has been a popular robot

design element in recent years because it allows force output from actuator that

work primarily in position like lead screws. Of more importance here is ability to

bring the contact dynamics of interaction with the world outside the robot into the

robot’s actuator [16]. By making the designed elastic element in the robot joint much

more compliant than the ground contact itself the dynamics of the ground contact are

brought into the actuator itself. This is a huge advantage because it means the known

compliance of the actuator dominates the impact and the hard to model dynamics of

the contact can be neglected. It also means that the collision is much more inelastic,

much like a car’s suspension system is designed to have a small mass on the end of

the spring to maintain contact with the road, the toe has a small mass on the end of

the spring which means the weight of the robot forces it to stay in contact with the

ground.

Because the ground contact force can only ever be applied in one direction (the

ground will never pull the foot) only a one-sided series elastic element is required

34



Figure 2-8: The robot’s series elastic foot actuator.

35



Figure 2-9: The cable which connects to the moving carriage in an inkjet printer was
the design inspiration for the similar mechanism in the robot’s feet.

which saves a significant amount of room in the mechanism. While the mechanism

worked well it turned out to be a bad decision in hindsight because the hard contact

on one side means that an inelastic collision is experienced every time the foot force

transitions over the spring preload making the dynamics model unnecessarily complex.

The picture of one of the feet in Figure 2-8 shows a few key design elements

worth discussion. The linear potentiometer which measures the spring compression

can be seen parallel to the spring and the ribbon flex cable which connects it to the

controller board is the flat white cable connected to it. Getting that cable right was

one of the major design challenges of the actuator because the carriage which holds

the potentiometer translates a long distance. Either a full cable carriage is required

or the cable must somehow constrain itself be planar and fold over itself reliably.

The design is borrowed from what is commonly used in inkjet printers which need

to solve exactly the same problem with their moving carriage. A flat, stiff ribbon is

used which maintains itself in plane but is flexible out of that plane, allowing it to

fold over itself as the carriage moves.

The offset motor configuration is important for a reason besides packaging of the

actuator, it allows a timing belt to be inserted between the motor output and the lead

screw. This is critical because the specific loading and velocity requirements of the

foot weren’t known at the time of construction, the timing belt allowed the gear ratio

be modified very easily to put the actuator’s operating range in the right place once

36



testing established where that was. The same design decision is behind the way the

aluminum platens are clamped onto the guide shafts instead of using a more positive

locking mechanism, it allows different length springs to be added after the fact and

the amount of preload to be easily changed.

Figure 2-10: The two middle feet branching off from the single middle leg.

The final main design point on the feet is why there are four of them. The original

reason here was that it’s simpler to build four of the same actuators than two of the

same and one different because it carries twice the loading of the other two. Later

on a more important reason emerged, stabilization of side to side motion. Originally

the two middle feet were joined back to back but early in testing it became apparent

that a larger stance distance was required to keep the robot solidly stable in that

direction. This is why the spreading truss pictured is aluminum rather than the

titanium sheet construction of the rest of the robot, it was produced after all of the

expensive titanium sheet had been used up. With the feet further spaced apart as

37



Figure 2-11: The original foot configuration where the middle two were bolted back
to back.

pictured that motion is no longer a problem.

2.2.2 Body and Bisection Mechanism

The body itself is probably the simplest part of the robot. Its only job is to hold all

of the robot’s support systems together in an organized fashion. The main interesting

aspect to it is the angle bisecting mechanism whose job it is to keep the angle of the

body parallel to a bisector of the inter-leg angle. While it sounds a little complicated,

it’s surprisingly easy once it’s noted that the body is mounted to the frame of the

outer leg and the driveshaft for the inner leg is easily accessible. These two can be

driven against each other with some drive system and gear ratio to produce any kind

of prescribed angle with relation to the two legs. A 2 : 1 drive ratio between the links

produces the desired angle bisecting behavior.

As shown in 2-12 this is accomplished with a tensioned cable drive. While this

configuation was more difficult to design and assemble than alternatives such as a

chain drive the big advantage is that it’s possible to completely eliminate backlash

38



and produce a very smooth drive system.

While the prescribed angle mechanism is straightforward and reliable there are

serious advantages to being able to actuate the body against the rest of the robot.

The large mass of the robot’s support equipment (computer, batteries, etc) makes

it a great body to actuate against to assist in regulating the motion of the legs. In

addition to this, changing the forward or backward bias of the body while largely

keeping it bisecting the inter-leg angle can change the passive dynamics of walking

gaits, producing faster and slower walks without the cost of spending energy on

another full actuator.

2.2.3 Hip Actuation

The robot’s hip actuator, which applies torque between the legs, is easily the most

important actuator on the robot as it provides almost all of the regulation during

a walking gait. Ideally this actuator would have great bandwidth, zero backlash,

unlimited speed, be able to provide more torque than we would ever be able to safely

use, and be lightweight. Stepping away from the ideals, we can limit the requirements

on speed to what would be reasonable for the leg swinging during a running gait. As

for the torque requirements, they were put together with the idea that that robot

should be able to easily lift one leg to a right angle, based on the somewhat arbitrary

initial weight budget.

Initial concepts were made around using a direct drive actuator at the hip. Direct

drive actuators provide the ultimate in bandwidth, torque accuracy, zero backlash,

and friction characteristics because they completely forgo gearboxes, using the ele-

ments of an electric motor to move the robot’s links directly. This means that the

passive dynamics of the robot are easy to maintain and manipulate with little energy

input. It’s possible to mimic the desired passive dynamics with a motor and high

ratio gearbox up to some limiting frequency range, but requires a lot of energy to

keep the motor following what the passive dynamics want to do. Most robotics work

up to this point is focused on completely ignoring the passive dynamics of the system

and imposing desired dynamics with some energy efficiency which is what the large

39



Figure 2-12: The body’s angle bisection mechanism.

40



Figure 2-13: Initial concept for a direct drive hip actuator using a frameless motor
and our own aluminum frame. This allows the motor to be built into the robot in
the most efficient way possible.

gearboxes traditional to robotics excel at. A full discussion of the topic is available

in [1].

The big problem with direct drive actuators is that to get torques in the range

that we require, around 30N −m the actuators get to be unfeasibly large and heavy

because they need a large radius to apply the small electromagnetic forces generated

on. Meeting somewhere in the middle on this design issue is difficult because almost

all gearboxes have some backlash inherent to them, something that we really wanted

to avoid based on past experience with the acrobot. One gearbox that doesn’t suffer

from backlash is the Harmonic Drive. Typically Harmonic Drive gearboxes are the

domain of very high gear ratios and the complete antithesis of a passive dynamic

actuator, but with some creativity a very acceptable compromise between direct drive

and weight concerns was found.

The operating principles behind the harmonic drive are very different from tra-

ditional gearboxes, involving flexible metal gears that deform elastically. The fact

that the gears deform elastically into each other means that the input and output

are always tightly meshed together. A full explanation of the operating principles,

along with a very helpful animation is available from the producer [12]. Normally the

Harmonic Drive isn’t considered to be backdrivable, the large torques at the output

41



Figure 2-14: Explosion of a Harmonic Drive gearbox from the Harmonic Drive oper-
ating principles literature [12].

required to break free even the tiny amount of friction at the input would cause the

very small teeth on the flex spline to skip and permanently damage the drive. In the

case of the lowest gear ratios available however, two things work in favor of backdriv-

ability. First is that with a small ratio the friction at the input is multiplied by a much

smaller amount (as it would be with any gearbox), but more importantly the teeth

inside a low ratio Harmonic Drive are very large. This means that the drive is much

more robust to large torques at the output and suffers from less friction internally.

The lowest ratio drive of 30 : 1 was selected for this application, opening up a large

selection of small, high specific torque motors to use.

Another note of interest about the gearbox used is that it’s a fully contained unit

including an output bearing. The output bearing is of the cross roller type and is

tightly loaded in order to minimize play in the output. This is because the drive

is designed for having cantilevered loads applied to it, such as fully supporting a

robot arm, but has the unfortunate effect of vastly increasing the amount of friction

at the drive output. Initial tests with the gearbox were very disappointing because

very large and unpredictable torques were required to break the leg free and very

little of the desired passive dynamics were exhibited. Because the robot’s leg joint

is double support thanks to the bearing opposite the gearbox this bearing doesn’t

need to be nearly as tight, so the gearbox output bearing was modified by shimming

42



Figure 2-15: The 30 : 1 ratio Harmonic Drive gearbox used in this robot, showing
the very large driving teeth. Overall diameter of the flex spline (right) is about 2.5
inches.

out the bearing races about 0.001 inches. This small change turned the gearbox

from disappointing to better than we ever expected, exhibiting very small and very

predictable static and viscous friction characteristics.

Figure 2-16: The cross roller bearing inside the robot’s Harmonic Drive gearbox.

The motor paired with the gearbox is a ThinGap TG2310 brushless, ironless DC

motor. This choice is just as notable as the gearbox because the ThinGap motor

exhibits the best specific torque characteristics available [21] at moderate speeds and

the ironless core means that the motor doesn’t exhibit any of the cogging that normal

brushless DC motors have. The moderate speed point is important because with the

gearbox the motor is no longer moving extremely slowly. These characteristics are

43



due to a new method of producing the windings from copper sheet rather than wire.

This motor paired with the aforementioned gearbox produces a hip actuator capable

of exerting over 30N-m of force at high speeds very accurately and without any

backlash.

The big disadvantage to the gearbox is that the Haromic Drive introduces a series

compliance with the motor. This is due to the thin structure of the flex spline, the

part of the gearbox that deforms to make the magic of the device. While this isn’t

noticeable most of the time, many of control experiments excited the lightly damped

(the motor side of the drive system has very little friction) high frequency dynamics

that this introduced. This can be handled in software and is discussed in Chapter 3.

2.2.4 Frame

The robot’s frame, while the most visible part of the robot, is one of the less important

parts of the whole system. It serves mostly to locate all of the important actuators,

sensors, and mechanisms in space in a reliable, lightweight manner. Once it’s known

what goes where and how much force will be applied between these pieces the required

structural properties can be determined and fulfilled. Rather than spend a lot of time

going over this process, I’d like to mention just a couple important design choices and

lessons learned.

The frame is a fabricated sheet metal structure. This decision has more to do

with efficiency of resources than performance of the robot. It’s much cheaper than

cutting the large three dimensional structures from solid pieces of material and we

have better equipment for working with sheet metal parts in-house. The waterjet

available at the lab allows arbitrarily complex sheet metal parts to be cut with ease

and with little material waste. This means that the robot’s frame can be prototyped

quickly from an expensive high performance material very quickly and at little cost.

Besides the waterjet the main enabling resource for this path is access to and skill

to use a tungsten inert gas (TIG) process welder. The TIG process allows very high

quality welds to be made with almost all structural metals, the main barrier to use

being the high manual skill required to perform it.

44



Following the construction method, the second piece is the material choice. All

of the frame pieces besides the legs are made from 6AL-4V titanium for a couple

unusual reasons. There are three common materials for structures such as this: steel,

aluminum, and titanium. All three materials have similar specific strength (yield

strength divided by density) and specific modulus (modulus of elasticity divided by

density).

Much of the robot’s frame construction is governed by the minimum thickness

of material that can be used. Even though a part could be made exceedingly thin

according to the predicted loading it’s often unwise to do so because the bumps and

scratches of everyday use could damage it and sheet thinner than about 0.035 inches

thick is difficult to weld by hand reliably. This means a low density material is desired,

leaving aluminum and titanium.

The main problem with using aluminum is that it’s difficult to produce good

quality welds with it in a prototyping situation. The high thermal conductivity of

the metal makes it necessary to use very large electric currents to weld it because

it draws heat away from the weld site so effectively. When welding the material the

portion of the workpiece just on the edge of melting is much larger than with steel

or titanium, requiring more manual dexterity to manage the heat input and torch

movement.

Titanium on the other hand has thermal characteristics much closer to steel and is

very simple to weld except for one very big caveat. The material pulls in atmospheric

contaminants very easily at the temperatures involved with welding causing serious

embrittlement problems. Special care must be taken to fully shield much more of

the workpiece in a pure argon atmosphere than with steel or aluminum which still

experience contamination issues, but to a much smaller extent.

The specific titanium alloy used is 6AL-4V, otherwise known as Grade 5. It

has a good balance of stiffness and weldability, but more importantly, it’s the most

commonly used alloy. This means that it’s widely available on the surplus market at

reasonable prices.

The reason why the legs are carbon fiber as opposed to titanium is because they’re

45



Figure 2-17: The robot’s titanium sheet metal hip shortly after being welded. The
aluminum fixture was used to hold the three leg connections parallel.

extremely simple geometry-wise. The only thing the legs do is provide a point to point

structural connection between the feet and the hip meaning that a mass produced

tube can be used in that place without modification. Carbon fiber construction could

have been used for the rest of the robot with performance benefits, but the molding

and layup process is much, much more difficult and expensive than the sheet metal

welding alternative.

Hip Box Analysis

As part of a side project to learn about finite element analysis, the robot hip was

subjected to an in-depth analysis after being built with interesting findings worth

noting here. The cutouts in the hip box structure that contains the hip actuator were

made based on design intuition. The box can be thought of as a simple beam and the

triangular cutouts attempt to remove material from the neutral axis where it isn’t

being used effectively. This should produce a structure that has a better stiffness

to weight ratio. In order to find out if this actually happened a simplified model of

the hip box was compared to a a model of the same outside dimensions without the

cutouts. The box without the cutouts has a weight of 383 grams versus 275 grams

46



Figure 2-18: Initial mockup of the robot without the upper stiffening hoop.

47



Figure 2-19: The simplified version of the robot’s hip box subjected to an end load.

with the cutouts.

The analysis was performed using ADINA, a commercial FEA package, with shell

elements. The analysis assumed small strains but large displacements. The box is

fully fixed at one end and an end load was applied along the top edge of the opposite

end. The loading isn’t what is actually seen with the robot, but is representative of

some of the real loadings when looking at how the overall structure behaves. The

primary reason for the simplified loading is to make the simple box model analytically

tractable so that the initial FEA results could be checked against a known answer.

Figure 2.2.4 shows the relevant numerical results of the analysis. The stiffness of

the simple box remains high and linear up to extremely high loads but the modified

box shows much less rigidity initially and the analysis fails at a relatively small load.

In both cases the analysis failed because of catastrophic buckling. The initial takeaway

message is that the material removal was a bad idea, it actually ruined both the

stiffness and strength of the structure for little weight savings.

The exact structural mechanism by which this happened can be seen in the com-

parison between Figures 2-20 and 2-19. The simple beam shows a pronounced bulging

48



Figure 2-20: The hip box without the triangular cutouts under the same loading.

49



downward of the top plate which doesn’t happen with the complex beam, what’s hap-

pening here is the material removal removes the coupling between the box sides and

the top. In the case of the simple box the highly loaded bottom part of the sides is

held in plane by the section that first order beam intuition suggests isn’t doing any-

thing useful. When this material is removed the thin sections that should be carrying

the load go into buckling almost immediately.

50



Chapter 3

System Architecture

Besides the base mechanical and electrical design of the robot there is another world

of software infrastructure that ties all the individual sensors and actuators together.

Previous experimental platforms we had built at the lab used relatively simple soft-

ware systems, a master program that communicated will all the onboard sensors and

actuators, typically connected via a single data acquisition board.

This kind of setup works halfway decently for robots that have a few similar sen-

sors, for example a couple encoders, an IMU, and some motors. All the libraries to

work with the different devices can be linked in and threaded together without too

much complication. This kind of system often uses a software backend like DSpace,

Labview, or Simulink XPC. As a robot grows in complexity the software’s respon-

sibilities start to bloat and the system becomes more fragile unless failure cases are

expected and handled. Along with that bloat, it can be expected that most of the

software in a research lab’s arsenal will be somewhat buggy and have little in the way

of fault tolerance because it was produced by graduate students. Ideally pieces of the

robot’s system should be able to fail without bringing down any other parts, be easily

monitored, and be trivially reusable without knowledge of the underlying code.

It’s also often the case that a robot often requires software pieces compatible only

with different programming languages and communication between multiple comput-

ers. For example, a motion capture arena, the robot’s onboard computer, and a

controller computer with a user interface. As it’s a buggy research platform we’d

51



also like to log every little thing that happens so that we pin down fault conditions

and replay sensor streams for offline algorithm testing. This list of desires in more

complex robotic systems quickly gets away from the capabilities of monolithic design.

Seeing the need to integrate many different subsystems on our robot, a CAN net-

work with five motor controllers, motion capture arena, inertial measurement unit, a

LIDAR scanner, and possibly multiple other computer systems running control sys-

tems offboard we looked toward the Lightweight Communications and Marshalling

(LCM) system developed at MIT around the DARPA Urban Challenge vehicle. The

premise of the system, in contrast to many other heavyweight robotics software pack-

ages is to form the simplest, most decentralized system possible with little in the way

of predefined structure in the system or in the data. It’s a simple set of libraries that

let programs written in many different languages seamlessly communicate with each

other either on a local computer or over a network [9].

This is a big deal to roboticists interested in control of dynamic systems because

we care about different things than normal roboticists. We typically care about send-

ing small packages of data, sets of gains, encoder readings, etc. around very fast

and closing loops with them without too much software infrastructure. Small, fast

programs are desired that keep errors isolated and allow deep logging without inter-

ference with operation. To that end we’ve found great use in LCM. The standardized,

but lightweight and distributed architecture has allowed us to develop a system that

fits our needs exactly is usable with all of our robots.

The architecture we have designed closely resembles the canonical control loop

with a few key differences which make it compatible with the real world. At the

hardware interfacing level we have a handful of sensors that all connect to the com-

puter via different interfaces. The four toe actuators connect via a single CAN bus,

the hip motor via a separate CAN bus, the IMU directly over USB, and a wide range

of other possible sensors connect over TCP/IP, like the Vicon system. Each of these

sensors, actuators, or sensor networks has its own independent process running at the

operating system level. Programs like the IMU interface simply send status updates

as fast as they get them while others send their data out on a clock.

52



Figure 3-1: The system control and sensing architecture.

A good example of a clocked interface is the dead man switch, it sends an ’enable’

message at 100hz which all of the actuator programs look for. Because it is connected

to a button it could send messages as fast as it likes and flood the network. Alter-

natively it could send messages only on state switches, but this is dangerous because

messages can be dropped, we would like a signal that’s constantly available. The

switch is actually located on the robot’s joystick along with several other buttons and

control sticks which do only send their state when they change. The single joystick

interface program provides for all of this functionality.

3.0.5 The Sensor Accumulator

The next piece in the control loop past the sensors would normally be a state estima-

tor, but, this being the real world, things can’t be that easy. All of the sensors send

their data at different rates, sometimes at rates higher than we want to run the control

loop at. This problem is especially acute because ideally the state estimator would

be written in Matlab, providing the best prototyping environment and access to the

full model of the robot, but Matlab can’t handle the IMU blasting out data at 1kHz.

The solution to this is to put a synchronization program in between them, which

53



can easily be written in C because it doesn’t have to do anything complicated. This

program, called the Sensor Accumulator, subscribes to the LCM channels of every

sensor on the robot, takes in every message they send, and sends out a consolidated

”Robot Measurement” message at a fixed rate. This not only fixes the performance

issue already stated, but eliminates another more subtle issue. The state estimator

can be expected to have a lot of computation to do with the data it gets, enough that

it would need a separate thread to manage all the incoming sensor messages while

it does its real job. A consolidated measurement message on a fixed clock means

that the state estimator can not only operate with a single thread, but can simply

block until it gets the measurement message, making the sensor accumulator a very

effective clock for the whole control loop. The measurement message triggers a state

update and the consequential state estimate message, which then triggers a control

update.

3.0.6 The Command Dispatch

The control update bring into light the Sensor Accumulator’s brother, the Command

Dispatch. The command dispatch receives a consolidated actuator command message

and has the job of splitting that up into all the different messages that actually go

out to the hardware interfaces. This functionality is less critical than the Sensor

Accumulator’s asynchronous sensor management, but is still important to the ability

to abstract away the hardware for the purpose of simulation, the dual purpose of the

architecture.

3.0.7 Plug and simulate functionality

With the Sensor Accumulator and Command Dispatch both serving as a firewall to

the detailed hardware interfaces a few very cool things are easily accomplished. The

robot is reduced to a system that is commanded and sensed via two well defined

messages. These two messages have can be read by matlab and turned into the

canonical measurement and command vectors, y and u. The state vector that is

54



traditionally produced from the measurements is also defined as an LCM message

and message to vector mapping to be sent from an independently operating state

estimator process to a controller.

This means that it’s possible to replace the hardware robot with either a simulator

that produces perfect state messages or with a simulator that produces measurement

messages according to a sensor model with zero changes to the code of any existing

piece. It also means that it’s easy to log the inputs and outputs of the entire system

using preexisting LCM utilities and play back real sensor messages from the robot

to debug state estimator issues, or play back state messages to investigate controller

changes.

The base hardware communication software has the very straightforward job of

forming the bridge between the software that contains all of the intelligence of interest

and the hardware system which means that all of the information really available

about the robot is accessible to the logging utilities. This vastly simplifies debugging

because it means the actual hardware isn’t required to perform diagnostics on the

experimental software and the record can be replayed slowed down. For example, it’s

simple to take several data records of the robot switching stance legs and then to

design and test an impact detector offline.

Figure 3-2: Diagram showing the typical use case for the architecture used in the
context of simulation. Graphic courtesy of Andrew Barry.

Figure 3-3: Graphic courtesy of Andrew Barry.

55



3.0.8 System Decentralization

In the LCM architecture the computer’s networking infrastructure forms something

akin to a big ’pool’ of messages, in which any program is able to add or read messages

without any other program knowing about it. This means that in addition to the

ability for a logging program to dip into the pool without disturbing anything, it’s

also possible to bridge these pools of messages between different computers completely

transparently. For example, if the robot has a scanning laser rangefinder it’s possible

to run a computationally intensive data processing program on a different computer,

avoiding any possible problems with bogging down the main hardware interfacing

system that needs to operate on a strict clock. It’s also possible to run experimental

control loops on a separate computer with a monitor and full Matlab GUI, or have a

remote control that’s plugged into a separate computer and transmits LCM messages

back to the robot.

We found there are also places where this can turn against system performance.

The robot commonly generates megabytes per second of data, which is trivially han-

dled by a wired network connection, but when the robot is run untethered on a

wireless connection the link can get overwhelmed and will slow down the entire mes-

sage passing system. An expanded package of LCM utilities called bot-lcm-tools is

available by contacting the authors of LCM [9] which includes a selective tunneling

program. This allows the message pool to be explicitly segregated between computers

and a TCP tunnel established between them to transmit the messages that actually

need to travel across the link. On this robot those two signals were the remote control

and dead man switch messages from a command computer.

56



Chapter 4

Control Experiments

While the mechanical design and system architecture are the biggest physical arti-

facts of the project, the controls work that actually turns those pieces into a walking

machine is both the heart and the real target of the project. The design and fabrica-

tion took the first nine months of the project while the investigation of what it takes

to control the system well has taken the second nine months.

Actually going through the process of making what are straightforward tasks in

simulation work on real hardware has taught us a tremendous amount about the

strengths and weaknesses of our methods and has given us a wealth of problems to

focus new theory on. This chapter walks through the control experiments attempted

chronologically.

4.1 Virtual Constraints Experiment

When we finished the actual robot, got all the actuators and sensors working well,

the first thing we wanted to do was get it walking via a well investigated method with

which good results were nearly guaranteed. Walking control based on the theory of

virtual constraints has been applied successfully to several robots, notably RABBIT

[3] and MABEL [5].

The basic idea of the controller is that, having a desired walking trajectory defined,

all of the motions of the system such as foot positions or the angle of the swing leg

57



are treated as prescribed motions clocked off a key state of the robot which progresses

monotonically through a single period of the gait. In the case of this robot that state

is the angle of the stance leg, the most difficult state to effect change on because of the

large inertia it’s tied to. Leaving this state free to evolve on its own frees the control

system from trying to regulate the trajectory in time. While it’s possible that the

system can be stopped by a large enough disturbance as with any controller (no level

of cleverness is going to pick it up off the floor) the controller has some guarantees of

convergence to the nominal trajectory if all the prescribed motions are followed well.

Without a full system model it’s still possible to put together a walking controller

using this method for the compass gait because we know something important about

the geometry of the robot. As long as the swing leg is in a position to catch the robot

as it’s falling forward or backward it’s impossible to fall over. There are obviously

limits to this, the robot can speed up until the leg position can’t be kept in front

of it, but it provides a good base for keeping the robot standing up. A second

controller, possibly modifying the trajectory the toes follow can regulate the robot’s

speed, providing more or less push-off or causing the swing leg to impact the ground

with a shorter or longer step.

A controller based on this architecture was built using mostly trial and error.

While that isn’t what I would have done if repeating the process it worked quite

well to quickly produce a working, if fragile, walking controller in a short time frame.

Having the wide variety of tools we’ve developed in the process of additional control

experiments like a reliable system model and trajectory optimization tools I think we

could produce a more reliable controller of the same architecture much more quickly.

In the iteration of the controller that ended up producing the best trajectories on

the real robot the position of the toes was constrained to be the absolute value of

a linear function of the stance leg angle, producing triangular trajectories where the

swing toe is at minimum extension at zero stance leg angle and the stance toe is at

maximum to facilitate the swing through. The swing leg position is regulated to a

bezier curve, again dependent on the stance leg angle. The curve was initialized as

line with a slope of 2, simply putting the leg where the robot is falling and was then

58



modified experimentally. As an additional way to add energy half of a period of a

sine wave is added to the start of the swing toe trajectory. This allows a short lived

’nudge’ to be exerted to speed up the robot without significantly changing the rest of

the motion.

A couple of perhaps obvious, but still important observations were made during

this experiment. First is that we found it very difficult to regulate the position of the

swing leg with a conventional linear controller, a result also noticed in the development

of MABEL [18]. The swing leg is in essence a pendulum and if we try to maintain

the inter-leg angle as twice the angle of the stance leg it means that the the leg will

be brought to angles far from vertical, very much invalidating any linearization of

the dynamics. As the leg gets further from vertical more torque is required to hold

position which must get taken up by a proportional or integral gain term, gains that

work well at one angle don’t work at others. While gain scheduling is a possible

solution here, a much better solution is available: feedback linearization. The simple

addition of a torque counteracting gravity, proportional to the sine of the swing leg

angle eliminated the largest nonlinearity without needing a full model of the system

and vastly improved the tracking of the linear controller.

The second observation applies to the design of the robot for controllability. In

this underactuated walking with a point foot there are two control objectives in

competition: regulation of the stance leg versus regulation of the swing leg. Trying

to balance in place requires more attention to be paid to the stance leg making it

advantageous to have a swing with with a large inertia (there’s more to ’push’ against

when making corrections to the stance leg). In walking the opposite is often desired;

the stance leg dynamics are left to evolve on their own while the swing leg is quickly

moved to keep the robot upright and regulate energy via changing the step length.

In this kind of walking it’s advantageous to have very lightweight toes and legs in

comparison to the rest of the robot. While we were eventually able to accomplish

both control tasks with the robot as designed, the aforementioned changes for each

case would have made the control task significantly easier.

59



4.2 System Model and Identification

The system model used for control design is simple in concept, but rather complex

mathematically. Diagrammed in Figure 4-1, the robot is treated as three links, each

with a mass and inertia, connected at the hip joint. The body angle θ3 is constrained

to bisect the angle between the two legs so it isn’t a system state but it is kept to

simplify defining the system Lagrangian. The motor rotor inertia is rolled into the

body link inertia because they both act together and will be indistinguishable via

system identification. The chain is connected to the ground with a second pin joint

representing the ground contact of the point toe, free to rotate but fixed translation-

ally by the weight of the robot on top of it. In practice it is possible for the toe to

slip when the hip applies large torques. This is left out of the model to keep it at the

minimum complexity necessary to accomplish the planning and control objectives.

The Lagrangian is constructed from the positions, velocities, and angular velocities

of the three bodies in the conventional fashion. The derivation, while largely mechani-

cal, is quite long and performed using Mathematica. The Mathematica notebook used

is included in Appendix A. The final equations are formatted in the manipulator equa-

tion form shown in Equation 4.1, where q and u are defined as in Equations 4.2 and

4.3. The constants Ci are the physical quantities related to combinations of masses,

lengths and inertias.

H(q)q̈+C(q, q̇)q̇+G(q) = Bu (4.1)

q =



θ1

θ2


 (4.2)

u =




τ

−τ


 (4.3)

60


