
Figure 4-1: The three-link system model describing the compass gait plant.

H =

c2 c3 − c5cos(θ−) + 2c6cos(
θ−
2
)

c3 − c5cos(θ−) + 2c6cos(
θ−
2
) 1 + c1 − 2c4 + 4c6cos(

θ−
2
)

 (4.4)

C =

0 (c5sin(θ−)− 2c6sin(
θ−
2
))θ̇2

(c6sin(
θ−
2
)− c5sin(θ−))θ̇1 c6(2θ̇1 − θ̇2)sin(

θ−
2
)

 (4.5)

61

G =

w2(2c6sin(−θ+) + c5sin(θ1))

w2(2c6sin(−θ+) + (c4 − 1)sin(θ2))

 (4.6)

The manipulator equations can be linearized around a fixed point in order to

produce linearized dynamics in the familiar state space form [20], the end product

shown in Equations 4.8 and 4.9.

x =

θ1

θ2

θ̇1

θ̇2

(4.7)

A =

0 I

H−1 ∂G
∂q

−H−1C

�����
x=x0,u=u0

(4.8)

B =

0

H−1B

�����
x=x0,u=u0

(4.9)

4.2.1 Impact Model

We chose to use an inelastic impact model for these experiments for a few reasons.

First, this is what we would like to be happening in reality. A partially elastic collision

would mean that the leg bounces off the ground at impact and that the dynamics

of the event can’t be approximated as instantaneous. As mentioned earlier, we took

care to make sure the design of the toes helped to enforce this condition by adding

compliance into the feet. This little bit of of a ’suspension’ system between the toe and

the rest of the robot helps accomplish that goal by making the toe very lightweight

compared to the rest of the robot and the spring that holds it against the ground, any

oscillation coming from the impact is forced to happen between the robot and the toe

rather than between the toe and the ground. This is desirable because the robot-toe

system is designed by us, easily modeled, and stays inside a continuous plant mode

(in the ideal case).

62

Analysis of the real impact data shows that the impacts are indeed almost perfectly

inelastic even with the toes fully retracted which removes the series elastic effect from

the feet. In the fully retracted case with the toes impacting on wood blocks we found

that the impact dynamics happened practically instantaneously, within a single time

step of the control loop. This is shown in Figure 4-2. Important to note here is that

the velocities here are produced using a state observer based on the hybrid model

which makes the impact appear more clean that it would from the true velocity.

Figure 4-2: Plot of leg velocities resulting from an open loop command played on the
robot versus the simulator.

The actual solution for the impact dynamics of a multi link chain like this robot is a

little bit complicated but thankfully the process is very mechanical. The derivation of

this for an open kinematic chain like this robot and most others of interest in robotics

is available from several sources, one of which is Yanzhen Xie’s master’s thesis on a

similar bipedal robot but with knees [23]. With the gradients of the collision function

for this robot defined as in equation 4.10 the impact update is as in equation 4.11.

One common confusion when performing the impact update is which model gets

used for mass matrix in the update equation. The answer here is neither of the

stance models. The plant dynamics derivation must be performed in the unpinned

63

configuration. This is why the collision function gradients has entries for two extra

states, the x and y position of the stance foot. The derivation for the unpinned plant

was performed by Michael Levashov as is included in Appendix A.

AT =
∂g

∂q
=

−cos(θin) −sin(θin)

cos(θout) sin(θout)

1 0

0 1

(4.10)

q̇+ = q̇− −M−1AT (AM−1AT)−1Aq̇− (4.11)

4.2.2 Actuator Friction

Previous investigation with the Harmonic Drive gearbox has shown a pair of basis

functions including Coulomb and viscous friction fit the friction rather well and those

basis functions are used here. Rather than modeling the Coulomb friction as a true

discontinuity a somewhat arbitrarily sloped but steep sigmoid is substituted to make

the dynamics differentiable.

In practice we ended up being able to identify the friction model quite accurately

which allowed us to feedback linearize the friction away so the nonlinearities don’t

need to be accounted for in the rest of the control design performed.

τfriction =

−bvisc(θ̇2 − ˙θ1)− bcoul(

2

1+e(−200(θ̇2− ˙θ1))
− 1)

bvisc(θ̇2 − ˙θ1) + bcoul(
2

1+e(−200(θ̇2− ˙θ1))
− 1)

 (4.12)

4.2.3 System Identification

While finding a suitable model form is important, it’s only half the job required to

produce a suitable system model for control design. For a large mechanical system

such as this it’s often adequate to measure the actual system parts or compute their

properties from the software used to design them (Solidworks in this case), but these

individual static measurements are usually only so accurate when it comes to a sys-

64

tem even as complex as the robot under discussion. We would like to be able to

simulate the whole system accurately with a time horizon of several seconds, the ex-

pected length of a step or recovery maneuver. To this end the technique of system

identification via simulation error optimization is used. Unlike the conventional least

squares system identification which optimizes based on the one step prediction er-

ror of the system accelerations, simulation error based system identification uses the

metric shown in Equation 4.13 where yex are the system outputs from experiment

and ysim are the system outputs from the simulator.

J =
k=N�

k=0

�yex[k]− ysim[k]�2 (4.13)

A set of data is collected on the real robot with some input signal used to excite

it, this same input with the same initial conditions is applied to the robot simulator

and the measurement vectors produced by each at each time step are compared.

The squared difference between simulation and reality is the cost to be minimized

and is a nonlinear optimization problem. The minimization is performed by varying

the inputs to the robot model according to one of the many nonlinear optimization

methods available, in this case Matlab’s fminsearch function was used.

When fully expanded it’s easily seen that the system’s equations of motion take

the form of a set of scaled nonlinear basis functions. Specific combinations of masses,

lengths and inertias are what is really important to the motion of the robot rather

than the individual measured parameters we commonly work with. Terms such as

sines and cosines of state variables form a set of basis functions in the equations that

are multiplied by the system parameters. When doing the more conventional least

squares identification this is made very obvious, but it still needs to be remembered

when working with the simulation error based methods because working with a set

of optimization variables that are overparameterized will cause incorrect output, but

without any warnings as the computer chugs along. Only these combinations that

multiply distinct basis functions can be identified by the dynamic motions of the

robot. These parameters are listed in Table 4.1.

65

Table 4.1: Physical Constants to Identify

Parameter Definition Calculated SysID
l Leg length - measured 1.045 1.045
mt Total robot mass - measured 15.2 15.2
c1 I1m1 0.0207 0.1007
c2 I2m2 0.1101 0.1434
c3 I3m3 0.0017 0.000596
c4

lc1lm1

mt
0.1382 0.1151

c5
lc2lm2

mt
0.0987 0.1264

c6
lc3lm3

mt
0.0329 0.0026

bv Hip viscous friction none 0.0418
bc Hip coulomb friction none 0.1109

The actual experimental records used to optimize the simulator took a little bit of

creativity to come up with themselves. The ideal place to take data is where the robot

will be during normal walking and balancing tasks, but without a working controller

those areas of state space is unstable. In order to make those areas stable for the

purpose of identification two springs were added as pictured in Figure 4-3 which

make the system passively stable around the balancing fixed point. The two spring

constants were identified to high accuracy in a separate experiment and were added

explicitly to the equations of motion for the simulator. This setup still identifies the

system parameters without the springs because those parts of the equations of motion

are unchanged.

Several other different system identification setups were also used to make sure

that all parts of the dynamics were adequately excited and to check against the results.

In addition to the spring-stabilized tests conducted with each leg as the stance leg

two additional tests were conducted with each leg fixed in the upright position. These

two fixed leg tests each provide data on a different subset of the parameters, while

the spring tests provide data on all the parameters but with them represented in the

experiment with different prominence.

In addition to these tests we also performed a test in which both legs are parallel

and the robot moves in a full pendulum mode with the stabilizing springs. The

66

Figure 4-3: The robot setup during system identification. Note the springs stabilizing
the system at the equilibrium point.

dynamics in this case are a very simple degenerate form of the full equations of

motion and doesn’t even include actuation, the robot is only excited by its initial

conditions. This test represents all of the physical parameters, but in a way in which

they can’t be individually identified, and makes a good independent check on all of

the other tests.

In performing the system identification a lot of expertise in the process of produc-

ing good data sets was amassed. Someone performing the process again will likely

re-learn a lot of these points in their own experimentation, but hopefully the right

track will be found a little more quickly.

One of the things we noticed is that initial conditions and zeroing can play an

undesirably large role if the experiment design allows them to. This is especially bad

67

Figure 4-4: The robot with one of the legs fixed, producing a stable configuration
and focusing on a subset of the system’s dynamics.

because there is necessarily some variation in how the system is set up each time.

For example, if the system is initially standing at the upright equilibrium then it can

fall in either direction and the dynamics evolve slowly from that point. It would be

much better to start from some known position in which the speed and direction with

which the motion evolves is less dependent on the initial conditions like zero velocity

at some point far from the origin.

A similar point applies for parts of state space reached during the test. Unstable

equilibria, where the motion can evolve in two different directions depending on some

very small change in state, like being near zero velocity at the upright, can make it

very difficult for the simulation error optimization to converge. Say the optimizer

wants to add a tiny bit of inertia to the stance leg, in this situation at some point it

68

will mean the difference between making it over the upright position and not. This

produces cliffs in the cost landscape which, while they reflect the problem that has

been posed to the optimizer, aren’t really a part of the identification problem you want

to solve. If only the experiment had been designed to carry more velocity through the

upright position, or avoid it entirely, then the optimizer would be able to smoothly

vary that inertia, allowing the whole set of parameters to slide into place more easily.

We also spent a fair bit of time trying to identify the system when it’s closed

loop stable, after we had produced a working balancing controller. While technically

this kind of setup can work, in systems like this robot and many of the robots we

work with it doesn’t have a chance. This is because the control action required to

keep the robot upright is extremely strong and the nonidealities of the control loop

corrupt the response a great deal. These nonidealities are things such as delays, the

frequency response of the motor and controller, unmodeled high frequency dynamics,

and the frequency responses and drift characteristics of the sensors used. All of these

items have their own parameters which a more thorough system identification would

be interested in, but really need to be handled in smaller, more focused experiments.

A point that is easy to overlook, but may be more important than any other

point here is that utmost care needs to be taken in how the system identification

data is handled. Because there is a lot of data coming from many different tests

and setups every detail needs to be recorded and confirmed. Several times during

the experiments and various re-fits of the data and re-runs of experiments we lost

confidence in previous data sets because of very simple things, like not being sure that

the sensor zeroing was performed properly, or what the sampling rate was because

it had been changed at some point, or if the sampling rate was maintained properly

throughout a test run. This means complete record keeping whether in the log files

themsevles or in another notebook. Confidence in the working set of data is extremely

important because it means less work will need to be repeated, and there are fewer

incorrect rationalizations to be made when the analysis turns out bad. Being able to

look back at the data set and know for sure that the analysis is wrong instead of the

data being wrong is invaluable.

69

One last note on the system identification process is that while ideally the basis

functions are capable of representing the physical system perfectly, this is almost never

true thanks to difficult to model pieces like joint friction. As a specific example, when

identifying the friction drive elbow joint of the acrobot we used viscous, coulomb,

and quadratic friction terms to obtain a very good fit in the area of state space we

collected data on. This included mostly medium velocity and long, smooth motions

of the robot. When we wanted to start using the model we identified for balancing

control it turned out to be wildly inaccurate because the near zero velocity regime

for the joint friction looks very different from where we collected data and having

incorrect basis functions, the the model didn’t generalize to other velocities well. The

point to be taken here is that data should be collected in exactly the regions of state

space you want the model to be accurate in, close often will not cut it when the basis

functions aren’t true to the real dynamics.

4.3 Observer Design

While both positions are measured by the robot’s sensors as previously described,

only one of the velocities that make up the full state is measured. The IMU produces

position and velocity of the stance leg, but the swing leg velocity must be deduced

from a position encoder only. Previous experience with similar platforms has shown

that the low pass filtering required on the quantized position signal from the encoder

produces results in two competing nonidealities. Either a delay that causes instability

in the kind of high gain controller required for balancing or the remnants of enough

noise that the controller produces unacceptable vibration must be accepted.

To work around this problem a discrete, full order high-gain observer is used to

produce the velocity measurements. It’s possible to use the nonlinear system model

inside the conventional fixed gain observer structure as described in Equations 4.14,

4.15 and 4.16 in order to produce more accurate observations with the tradeoff that

the observer dynamics are harder to analyze. In this case the nonlinear observer can

be much better because it accommodates the nonlinear friction model. Luckily, if the

70

Figure 4-5: The final system identification fits, compared against the training data.

gains and system assume the form described by Khalil shown in Equation 4.17 the

system has good stability properties[15]. The � term in the gain matrix provides a

convenient way to tune the time constant of the observer, in practicality to balance

between disturbance rejection and the nice low-pass/low-delay characteristics of the

observer that kill off sensor noise and unmodeled high frequency dynamics. In practice

the observer estimates both velocities very well and the velocity from the IMU is

actually dropped from the measurement vector which is reflected here and the value

� = 0.2 was used.

y =

θ1

θ2

 (4.14)

71

Figure 4-6: Time plots of the real robot executing a trajectory planned with the
identified model for model validation. The actual command differs from the nominal
because friction was not included in the model used by the planner. The friction
compensator used was also identified using the same techniques.

ẋ[k + 1] = f(x[k],u[k]),y[k] = Cx[k] (4.15)

x̂[k + 1] = x̂[k] + T (ˆ̇x[k] + L(y[k]− ŷ[k]) (4.16)

72

L =

2
�

0

0 2
�

1
�2

0

0 2
�2

(4.17)

4.4 Harmonic Drive Compliance

An issue that showed up in every control experiment was the excitation of unmodeled

high frequency dynamics when feedback gains were pushed high enough. This was

most notable in the case of the balancing controller which wasn’t able to stabilize the

system until the gains were raised past a specific threshold, well past the point at

which the high frequency dynamics were shaking the robot apart. In contrast to Fig-

ure ??, Figure 4-7 shows the time response of the system with the balancing controller

when steps to combat the unwanted excitation aren’t taken. Fourier transforms for

the torque signal in each case are shown in Figures 4-8 and 4-9. Note the large peak

just above 10Hz in the second plot as compared to the DFT of the good response.

Figure 4-7: A typical time response of the balancing controller when switched on with
a nonzero initial condition.

The tricky issue with this situation was that without a couple very specific mea-

73

Figure 4-8: Time response of the balancing controller without steps taken to attenuate
high frequency dynamics.

Figure 4-9: Discrete Fourier transform of the torque signal from the good balancing
response.

sures it wasn’t feasible to produce a working balancing controller for the robot. A

first order IIR filter on either the input or the output is able to block the unwanted

high frequencies, but brings with it too much delay and prevents successful balancing.

A much more selective filter (a fifth order Chebychev Type I filter was one of many

74

Figure 4-10: Discrete Fourier transform of the torque signal from the balancing re-
sponse with unwanted high frequency dynamics.

tried) is capable of better performance, but wasn’t able to solve the issue. The key

piece of the rejection puzzle was the state observer.

The process of ‘tuning up’ the state observer initially involved selecting an � which

produced smooth, reasonable looking velocities from the position data in a few simple

test cases of moving the robot around by hand. This led to the very small value of

� = 0.02, placing most of the emphasis on the measurements rather than the system

model. This would normally be a good thing because it means unmodeled dynamics

like the robot getting pushed unexpectedly are able to come through. The unwanted

high frequency dynamics are treated the same way by the observer, passing them

through from the sensors to the output.

If the observer has a perfect model of the system the sensor signals would pass

right through unaltered because the internal model and sensors would always be in

perfect agreement. Anything that isn’t part of the observer’s model gets attenuated

to some extent, in essence in addition to generating the velocity states the observer

is a ‘model-pass filter’. It lets though things not based on a specific frequency range

but based on what it expects to see at the inputs. This is exactly what is needed in

75

this case. Because the model the observer operates on is very accurate it’s possible to

turn � all the way up to 0.2, relying heavily on the model and leaving the unwanted

high frequency dynamics that exist in real life, but not in the model, at the door.

The main disadvantages to this approach are that it rejects all disturbances, even

those wanted in the state like a push from an external source, and that it isn’t robust

to model changes. Usually the observer’s internal model is treated more as a general

guide than the ground truth so they tend to perform well even with inaccurate models,

but that is the not case when used in this manner. Nevertheless, it solved the problem

at hand surprisingly well when conventional filtering methods failed.

Figure 4-11: The bracket the IMU is attached to, possibly flexing as the hip motor
applies large torques to the structure.

A final question to ask about the high frequency dynamics is where they are

coming from. Originally they were thought to be coming from flexing of the IMU

mount which is very close to the motor as shown in Figure 4-10. It’s possible that

when large torques are applied the IMU moves in relation to the rest of the structure.

To test this hypothesis a conventional frequency sweep was performed, looking at the

magnitude response between the motor input and the robot’s various sensors. The

76

robot was stabilized upright by hand without holding it tightly and a 5N −m chirp

between 1 and 20Hz was applied over a duration of several minutes. The recorded

signal was high pass filtered at 1Hz in order to eliminate slow movement of the robot

as a whole, the absolute value taken, and finally low pass filtered in order to extract

the shape of the magnitude response from the high frequency sinusoid used to drive

the system. The result shown in Figure 4-11 was somewhat surprising as it didn’t

show significant peaking at 10Hz, but did show a significant drop off right around

that point.

When the original hypothesis didn’t seem to hold up the search for the true cause

was expanded and the same treatment was performed on the system of torque to

the inter-leg angle encoder. This data is shown in Figure 4-12. In contrast to the

IMU mount this data shows a noticeable peak right at the target frequency. The

current hypothesis as to what is happening here is that the harmonic drive flex spline

is the compliance that is getting excited. This was further confirmed (somewhat

haphazardly) by the addition of mechanical damping to the motor rotor which put

an abrupt end to the oscillations.

Figure 4-12: Frequency response of the torque to IMU flex system.

77

Figure 4-13: Frequency response of the torque to inter-leg angle encoder system.

4.5 TVLQR Stabilized Trajectories

Time Varying LQR control for the stabilization of trajectories has become a staple

solution for nonlinear systems in the lab and was the second walking solution we

attempted to get working on the real robot. TVLQR tackles the problem of control

of a nonlinear system by linearizing the plant around a predefined trajectory. As a test

problem to work on we chose the ‘one step rebalance’ task, starting from equilibrium

conditions on one leg the robot takes a step and attempts to get into the balancing

controller on the other leg. This was done with the robot raised up on blocks so the

feet don’t need to be actuated.

One of the main failings of TVLQR is that it runs on a predefined clock. What

this means is that the controller not only needs to regulate the system to a specific

state, but it’s trying to get there in a specific amount of time which is an unnec-

essarily difficult control problem in most cases. This is particularly bad for hybrid

systems because the linearization that TVLQR uses is also indexed with time which

means that it’s possible that the controller gains are completely wrong for the sys-

tem’s equations of motion. This is particularly bad for this system where the sign

78

Figure 4-14: TVLQR stabilized ’one step rebalance’ trajectory. The small ripple
along the trajectory is due to the very high controller gains exciting unmodeled high
frequency dynamics in the system. Nominal trajectory is in cyan while the recorded
data is in red.

on the control output changes depending on which stance leg the robot is on, if the

robot doesn’t impact the ground exactly when the controller expects it to then it gets

thrown into positive feedback resulting in spectacular failure. We chose to combat

this problem by disabling the controller feedback near the expected impact point in

time which helped to minimize the problem, figure 4-13 shows this well. The trajec-

tories are slightly misaligned in time, enough that the time around where feedback is

disabled is exceeded resulting in a short lived spike in the command signal until the

real system came into line with the model.

Another important topic to discuss on TVLQR as it relates to underactuated

system like this robot is the issue of cost tuning. The state cost matrices Q final cost

Qf provide a lot of knobs to turn in developing controllers for specific application

79

allowing the designer to weight how the controller values errors in each of the systems

and couplings between those states but this freedom is a double-edged sword in that

it makes it possible to make bad decisions in addition to good ones. Simple strategies

like weighting all of the states similarly which often works in fully actuated systems

can produce extremely bad controllers for systems like the compass gait as measured

by the size of the controller’s basin of attraction. Finding the combination of state

costs and final state costs which produce the best controllers takes a combination of

design intuition and brute force.

Design intuition in the selection of controller costs is important because in the

case of an underactuated system errors in state must be traded off against each other

in order to nail the desired final state. High costs need to be put on states that

are important to the system linearization and long term stability, so the stance leg

position gets the highest cost, followed by the swing leg position second, and the two

leg velocities as a very, very distant third and fourth. This allows the controller make

the correct decision to give up lots of state error in the swing leg in order to regulate

errors in the stance leg which is the ultimate decider in whether you’re still standing

up. In addition to this, the final costs need to be very high in relation to the costs

along the trajectory in order to allow the controller to make significant excursions

from the nominal in order to actually get close to the final states, presumably the state

that really matters. The danger here is that the further off the nominal trajectory

the plant goes in reality the more incorrect the linearization is, so some cost along

the trajectory is necessary to keep it reasonably close.

4.6 Simulation LQR-Trees

The LQR-Trees algorithm, originally described by Russ Tedrake in his 2009 paper

[19], provides a way to fill a robot’s state space with a sparse tree of trajectories

leading to a goal point or trajectory. This is useful for situations where you wish

to bring a complicated nonlinear system such as the acrobot to an equilibrium, but

perhaps more importantly, bringing a similar system into a limit cycle like walking.

80

The algorithm combines aspects of rapidly exploring randomized trees with tra-

jectory planning and TVLQR stabilization of the trajectories. This combination of

tools isn’t very interesting in itself because it’s impossible to know what parts of the

space the existing trajectories already cover, but with tools recently developed it’s

possible to figure out how large a volume around a trajectory can be brought to the

goal point by that trajectory. This makes it possible to figure out where new tra-

jectories are needed and to avoid volumes that are already covered but the code for

doing this is highly complex to implement and at its current stage of development,

quite fragile.

An alternative to the formal verification methods was also developed along with

the algorithm which uses simulations instead of mathematical proofs to produce non-

conservative estimates of the basins of attraction though falsification [17]. Reist’s

method relies on dividing the tree of trajectories into nodes, each of which represents

a discrete time step in the trajectory it belongs to. These nodes contain their location

in state space, nominal control signals, control gains, a Lyapunov function, and scalar

ρ which marks the level set of the Lyapunov function which the controller is known

to stabilize.

Instead of finding a value for ρ when the trajectory is first added to the tree as in

the original LQR-Trees algorithm, ρ is initialized to be infinite. On each major loop

of the algorithm a random point in the state space is sampled and the tree is asked

if any of the nodes in it claim to be able to bring that point to the goal. For each

node that claims this a TVLQR controller is constructed starting with that point and

running to the goal and then simulated, if the simulation ends within the basin of

attraction of the time invariant controller it is considered successful and a new major

iteration is started. If the simulation fails, the edge of that node’s basin is cut down

to where the trajectory is at the point in time where it is active. As more simulations

are performed the basins will converge on a nonconservative estimate of where they

are valid.

The primary addition of this work is the extension to hybrid systems. The situ-

ation as presented with this robot is generating a tree for getting the robot back to

81

the upright equilibrium on a specific stance leg, so the problem has four continuous

states and one discrete state for which leg the robot is standing on. The robot can

be in either of the two stance leg states and should be able to take multiple steps

if necessary to get back to the goal, meaning that even if it’s on the target leg the

robot should be able take some multiple of two steps to get back into the equilibrium

state if it’s not feasible to get directly there. There are a couple major concerns with

hybrid systems as they relate to LQR-Trees, the lack of a distance metric for states

between plant modes, and the need to specify a schedule of plant modes for the direct

collocation method of trajectory optimization used [6].

The solution here was brute force but effective. The tree nodes were extended to

also track which plant mode their state belongs to and the distance metric the tree

uses was modified to report states in a different mode as infinitely far away. This

means that the tree would never attempt to build trajectories between plant modes,

but if trajectories already existed which crossed between modes then the tree would

be able to grow to the nodes in the matching mode on either side of the switching

surface. In order to populate the tree with trajectories which cross the switching

surfaces the extend operation makes multiple attempts for each sample point with

different mode schedules.

1. If the sample state is the same as the target state attempt to grow to the nearest

node.

2. If this isn’t feasible, attempt to take a step into the other plane mode and back

to the goal state.

1. If the sample state not in the same mode as the target state first look for any

nodes which connect back from the sample mode and try to grow to the closest.

2. If this isn’t feasible, attempt to connect directly back to the goal node in the

other mode.

This method allows the tree to be well populated by trajectories that cross the

switching surface without having a distance metric by specifying a known good node

82

instead. While this results in excess trajectory density around the goal, the effect

should be greatly lessened with a trajectory optimizer capable of optimizing over the

tree end constraint which is formally part of the algorithm but was omitted in this

case for ease of implementation. The results from this extend strategy can be seen in

Figure 4-14 which shows a pair of hybrid trees, one for each possible stance leg. This

is because in reality we don’t care which leg the robot ends up standing on once it’s

back at equilibrium, but each requires its own tree because the robot is asymmetric.

The major time sink in running the algorithm is checking whether a specific sample

and closest node are feasible to connect. The only way to figure this out is to run the

trajectory optimizer until either a time limit is exceeded or it reports that the problem

is infeasible, but we found it can take up to 30 seconds to produce a trajectory of

reasonable accuracy. Taking 30 seconds to decide a sample is infeasible isn’t a winning

strategy when tens of thousands of points need to be processed to map out the edges

of the feasible space. One way around this is recognizing that assessing the feasibility

of a trajectory, a yes or no answer, isn’t very dependent on the trajectory produced

being very accurate. To make use of this a two step trajectory optimization strategy

is employed where the first optimization run uses a very small number of knot points,

one about every quarter second, followed by an accurate optimization with a large

number of knot points, seeded with the output of the first. This allows feasability to

be tested in about one second on average and only sinking the time to develop the

full accuracy when it’s likely to have a useful result.

Along with this issue, it became very clear that the claims the algorithm makes

about filling the feasible state space need to be heavily qualified in practice. While

randomness in the trajectory optimizer initialization makes this technically true, in

this case the direct collocation method used often failed to produce a trajectory

using known good start and end points several times before eventually finding an

initialization it likes. This means that it may take an extremely long time to produce

something that looks like it covers the space. In the case of Figure 4-14 the algorithm

was run for 48 hours, sampling 306422 points with 45 of them resulting in successful

trajectories. This performance is expected to improve once the final tree constraint

83

is allowed to move up and down the tree.

The reason why experimental results haven’t been produced for the LQR-Trees

experiment yet has to do with finding which node the robot is closest to quickly.

The distance metric is based on evaluating the LQR Cost To Go between the robot’s

current state and the tree node which is currently done for every node on the tree

and then sorted. For the tree shown here this takes long enough that the robot is in

a completely different part of the tree. In the past this has been solved by running

the robot’s dynamics forward for as long as it’s expected to find where the robot is

in the tree and finding the nearest node to that state. The problem is that in this

case the robot usually falls over far enough in that time to be unrecoverable. Work

is currently being done to improve the speed of this operation including simple code

optimization and making use of additional information available about which nodes

are relevant to look at to reduce the number of calculations necessary.

4.7 Transverse Stabilized Walking

Transverse stabilization is a control strategy much like TVLQR, but completely dif-

ferent. Rather than indexing the trajectory in time it’s indexed off a phase variable

τ , freeing it from time, much like the virtual constraints controller mentioned before

except without a single state of the robot being the driving signal. This control strat-

egy has been developed in large part by Ian Manchester, who showed it working on

the simple compass gait robot mentioned in Section 1 [13] and played a major part in

making it work on this robot. His paper contains a full discussion of the technique.

Because the controller isn’t explicitly indexed off time the previously mentioned prob-

lem of the mode switch with TVLQR is no longer an issue.

We would like to demonstrate LQR Trees working with this transverse control with

the real robot as had been shown only in theory. Toward that goal we constructed

the most simple realization of the tree, the periodic orbit with a single recovery

maneuver, a step in from the upright equilibrium. A periodic walking trajectory

was planned using the previously mentioned DIRCOL code along with transversal

84

Figure 4-15: Plots of the hybrid LQR Tree controller designed to bring the robot to
equilibrium on either of the stance legs.

surfaces and a transverse controller to stabilize the trajectory. A second trajectory

from the upright equilibrium on the outer legs to the impact state in the periodic

trajectory was planned similarly, along with matching the transversal surface at the

end of the trajectory with the impact surface just as with the periodic trajectory.

The experiment results are shown here in Figure 4-16 for the first two pieces of the

trajectory, the step in and first periodic phase.

A couple important notes from the trajectory. First, the difference in how the

trajectory follows time should be noted. The time indexed nominal state trajectories

are plotted in cyan while the the τ indexed state trajectories which the controller is

regulating to are shown in blue. Second, the controller is able to handle the model

errors seen previously in the TVLQR response plots more naturally. Model errors

that cause the trajectory to take slightly longer or shorter in time don’t impact the

85

Figure 4-16: The planed periodic trajectory with the step-in trajectory from equilib-
rium.

Figure 4-17: The TVLQR stabilized step-in and first step of the periodic trajectory
as run on the real robot.

86

rest of the trajectory, instead the trajectory slides into place as it’s needed by the

actual robot’s dynamics. In applications where the state of the system matters while

the specific time that state happens at doesn’t, walking instead of catching a ball for

example, the transverse controller presents a significant performance and robustness

advantage.

In process of working with Ian Manchester to bring the transverse controller from

its largely theoretical status to working on arbitrary systems several sore spots were

uncovered, specifically in the optimization of the transversal surfaces along the tra-

jectory which define the space the controller operates in and how the progress of

the robot along the nominal trajectory is tracked by the controller. The last plot

in Figure 4-16 shows the progress of the τ phase variable via the previous method

used to calculate it (blue) and a new method based on an observer first attempted

on this robot (cyan). The actual work that went into bringing the controller into the

condition of working well on this robot will be published along with more complete

results of the transverse stabilized walking experiment shortly following this thesis.

The limited results here are largely due to a lack of time rather than problems with

the method.

87

88

Chapter 5

Conclusion

This thesis has presented the development of a compass gait walking robot from

concept through experiments, focusing on the interaction between mechanical design

choices and the control of the system with several aims. The first of these is the

application of several new ideas in control including LQR-Trees and transverse sta-

bilization to a full robotic system with all of the nonidealities of sensing and system

modeling issues. While not explicitly the focus of the writing here, the issues experi-

enced have been very helpful in provoking the development of these control strategies

past the theory stage and into a stage of development compatible with widespread im-

plementation. Further, the difficulties exposed have been fed back into the research

process, guiding the development of theory into areas where it’s weak such as the

high reliance on an accurate system model and the limitations of performing complex

control strategies in real time.

The second of these aims is to further the development of high performance and

highly dynamic robotics as a field of design. This thesis should provide a good feel for

the important objectives and pitfalls specific to designing highly dynamic mechanical

systems and the way the mechanical design is inseparable from the control strategy.

This is especially the case when heavily model reliant methods are used such as here,

many core design decisions rested on how amenable mechanisms were to modeling

and how they impacted model complexity.

Going forward, I hope that my contributions in the hardware platform and the

89

software system design that support it continue to produce useful research results for

years to come and provide direction for new designers in their own design of high

performance dynamic robots.

90

Bibliography

[1] Haruhiko Asada and Kamal Youcef-Toumi. Direct-Drive Robots - Theory and

Practice. The MIT Press, 1987.

[2] Humanoid Robot Research Center. Introduction of khr-3(hubo).

http://hubolab.kaist.ac.kr/KHR-3.php.

[3] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-

De-Wit, and J. W. Grizzle. Rabbit: a testbed for advanced control theory. IEEE

Control Systems Magazine, 23(5):57–79, Oct. 2003.

[4] Boston Dynamics. Bigdog - the most advanced rough-terrain robot on earth.

http://www.bostondynamics.com/robotbigdog.html.

[5] Grizzle, JW, Hurst, J., Morris, B., Park, H.W., Sreenath, and K. Mabel, a

new robotic bipedal walker and runner. In American Control Conference, 2009.

ACC’09., pages 2030–2036. IEEE, 2009.

[6] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear

programming and collocation. J Guidance, 10(4):338–342, July-August 1987.

[7] Hobbelen, D., de Boer, T., Wisse, and M. System overview of bipedal robots

flame and tulip: Tailor-made for limit cycle walking. In Intelligent Robots and

Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 2486–

2491. IEEE, 2008.

[8] Honda. The honda humanoid robot asimo. http://world.honda.com/ASIMO/.

91

[9] Albert S. Huang, Edwin Olson, and David C. Moore. Lcm: Lightweight commu-

nications and marshalling. International Conference on Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ, pages 4057–4062, October 2010.

[10] Fumiya Iida and Russ Tedrake. Minimalistic control of a compass gait robot

in rough terrain. In Proceedings of the IEEE/RAS International Conference on

Robotics and Automation (ICRA). IEEE/RAS, 2009.

[11] Karssen and J.G.D. Design and construction of the Cornell Ranger, a world

record distance walking robot., 2007.

[12] Harmonic Drive LLC. Operating principles. Website. http://www.

harmonicdrive.net/reference/operatingprinciples/.

[13] Ian R. Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake. Stable dy-

namic walking over rough terrain: Theory and experiment. In Proceedings of the

International Symposium on Robotics Research (ISRR), 2009.

[14] Microstrain. 3dm-gx3 specifications. Website. http://www.microstrain.com/

productdatasheets/3DM-GX3-25datasheetversion1.06.pdf.

[15] S. Oh and H.K. Khalil. Nonlinear Output-Feedback Tracking Using High-gain

Observer and Variable Structure Control*, 1. Automatica, 33(10):1845–1856,

1997.

[16] Gill A. Pratt, Matthew M. Williamson, Peter Dillworth, Jerry Pratt, Karsten

Ulland, and Anne Wright. Stiffness isn’t everything. In Proceedings of the 4th

Iternational Symposium on Experimental Robotics (ISER), 1995.

[17] Philipp Reist and Russ Tedrake. Simulation-based LQR-trees with input and

state constraints. In Proceedings of the International Conference on Robotics

and Automation (ICRA), 2010.

[18] Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, and JW. A compliant hybrid

zero dynamics controller for stable, efficient and fast bipedal walking on MABEL.

International Journal of Robotics Research, 2010.

92

[19] Russ Tedrake. LQR-Trees: Feedback motion planning on sparse randomized

trees. In Proceedings of Robotics: Science and Systems (RSS), page 8, 2009.

[20] Russ Tedrake. Underactuated Robotics: Learning, Planning, and Control for Ef-

ficient and Agile Machines: Course Notes for MIT 6.832. Working draft edition,

2010.

[21] ThinGap. Brushless tg2310 bldc motor. Website. http://www.thingap.com/

pdf/tg2310series.pdf.

[22] Martijn Wisse. Essentials of dynamic walking; Analysis and design of two-legged

robots. PhD thesis, Technische Universiteit Delft, 2004.

[23] Xie and Y. Dynamic effects of an upper body on a 2d bipedal robot. Master’s

thesis, University of Twente, 2006.

93

94

Appendix A

System Model Derivation

95

In[7]:= phip � �Sin��Θ 1� � l, Cos��Θ 1� � l� �� Position of hip joint��
SetAttributes� l, Constant�

Out[7]= ��l Sin�Θ 1�, l Cos�Θ 1��
In[11]:= pm1 � phip � �Sin��Θ 1� � �lc1�, Cos��Θ 1� � �lc1�� �� Position of mass 1 ��

SetAttributes�lc1, Constant�
Out[11]= ��l Sin�Θ 1� � lc1 Sin�Θ 1�, l Cos�Θ 1� � lc1 Cos�Θ 1��
In[13]:= pm2 � phip � ��Sin�Θ 2� � lc2, Cos�Θ 2� � lc2� �� Position of mass 2 ��

SetAttributes�lc2, Constant�
Out[13]= ��l Sin�Θ 1� � lc2 Sin�Θ 2�, l Cos�Θ 1� � lc2 Cos�Θ 2��
In[15]:= Θ 3�

�Θ 1� Θ 2�
2

;�� Introduce bisection: q3��q1�q2��2 ��
In[16]:= pm3 � phip � ��Sin�Θ 3� � lc3, Cos�Θ 3� � lc3� �� Position of mass 2 ��

SetAttributes�lc3, Constant�;
Out[16]= ��l Sin�Θ 1� � lc3 Sin�Θ 1� Θ 2

2
�, l Cos�Θ 1� � lc3 Cos�Θ 1� Θ 2

2
��

In[18]:= U � Simplify�m1 � g � pm1��2�� � m2 � g � pm2��2�� � m3 � g � pm3��2����� Total Potential Energy of the system ��
SetAttributes�� m1, m2, m3, g�, Constant�

Out[18]= g ��lc1 m1 � l �m1 � m2 � m3�� Cos�Θ 1� � lc2 m2 Cos�Θ 2� � lc3 m3 Cos�Θ 1� Θ 2
2

�
In[20]:= q � �Θ 1, Θ 2�;

dq � Dt�q, t�
Out[21]= �Dt�Θ 1, t�, Dt�Θ 2, t��
In[22]:= vm1 � D�pm1, �q��.dq

Out[22]= ���l Cos�Θ 1� � lc1 Cos�Θ 1�� Dt�Θ 1, t�, Dt�Θ 1, t� ��l Sin�Θ 1� � lc1 Sin�Θ 1���
In[23]:= vm2 � D�pm2, �q��.dq

Out[23]= ��l Cos�Θ 1� Dt�Θ 1, t� � lc2 Cos�Θ 2� Dt�Θ 2, t�, �l Dt�Θ 1, t� Sin�Θ 1� � lc2 Dt�Θ 2, t� Sin�Θ 2��
In[24]:= vm3 � D�pm3, �q��.dq

Out[24]= � �l Cos�Θ 1� � 1

2
lc3 Cos� Θ 1� Θ 2

2
� Dt�Θ 1, t� � 1

2
lc3 Cos� Θ 1� Θ 2

2
� Dt�Θ 2, t�,

�
1

2
lc3 Dt�Θ 2, t� Sin�Θ 1� Θ 2

2
� � Dt�Θ 1, t� �l Sin�Θ 1� � 1

2
lc3 Sin� Θ 1� Θ 2

2
� �

In[25]:= T � Simplify� 1
2
m1 � vm1.vm1 �

1

2
m2 � vm2.vm2 �

1

2
m3 � vm3.vm3 �

1

2
I1 � Dt�Θ 1, t�2 �

1

2
I2 � Dt�Θ 2, t�2 � 1

2
I3 � Dt�Θ 3, t�2� �� Total kinetic energy for the system ��

SetAttributes�� I1, I2, I3�, Constant�
Out[25]=

1

8
4 I1 � I3 � 4 l2 m1 � 8 l lc1 m1 � 4 lc12 m1 � 4 l2 m2 � 4 l2 m3 � lc32 m3 � 4 l lc3 m3 Cos�Θ 1� Θ 2

2
�

Dt�Θ 1, t�2 � 2 I3 � lc32 m3 � 2 l lc3 m3 Cos�Θ 1� Θ 2
2

� � 4 l lc2 m2 Cos�Θ 1� Θ 2�
Dt�Θ 1, t� Dt�Θ 2, t� � �4 I2 � I3 � 4 lc22 m2 � lc32 m3� Dt�Θ 2, t�2

In[27]:= L � Simplify�T � U�
Out[27]=

1

8
�8 g ��lc1 m1 � l �m1 � m2 � m3�� Cos�Θ 1� � lc2 m2 Cos�Θ 2� � lc3 m3 Cos�Θ 1� Θ 2

2
� �

4 I1 � I3 � 4 l2 m1 � 8 l lc1 m1 � 4 lc12 m1 � 4 l2 m2 � 4 l2 m3 � lc32 m3 � 4 l lc3 m3 Cos�Θ 1� Θ 2
2

�
Dt�Θ 1, t�2 � 2 I3 � lc32 m3 � 2 l lc3 m3 Cos�Θ 1� Θ 2

2
� � 4 l lc2 m2 Cos�Θ 1� Θ 2�

Dt�Θ 1, t� Dt�Θ 2, t� � �4 I2 � I3 � 4 lc22 m2 � lc32 m3� Dt�Θ 2, t�2
�� F1 and F2 are generalized non�conservative forces ��

In[45]:= eqnMotion � Simplify�Dt�D�L, �dq��, t� � D�L, �q�� � �Τ, �Τ� �. D�Dt�q��1��, t�, q��1��� � 0 �.
D�Dt�q��2��, t�, q��2��� � 0�

Out[45]= �1
4
�4 Τ � 4 I1 � I3 � 4 l2 m1 � 8 l lc1 m1 � 4 lc12 m1 � 4 l2 m2 � 4 l2 m3 � lc32 m3 � 4 l lc3 m3 Cos�Θ 1� Θ 2

2
�

Dt�Θ 1, �t, 2�� � I3 � lc32 m3 � 2 l lc3 m3 Cos�Θ 1� Θ 2
2

� � 4 l lc2 m2 Cos�Θ 1� Θ 2� Dt�Θ 2, �t, 2�� �
4 g l m1 Sin�Θ 1� � 4 g lc1 m1 Sin�Θ 1� � 4 g l m2 Sin�Θ 1� � 4 g l m3 Sin�Θ 1� �
l lc3 m3 Dt�Θ 1, t�2 Sin�Θ 1� Θ 2

2
� � 2 l lc3 m3 Dt�Θ 1, t� Dt�Θ 2, t� Sin�Θ 1� Θ 2

2
� �

l lc3 m3 Dt�Θ 2, t�2 Sin�Θ 1� Θ 2
2

� � 4 l lc2 m2 Dt�Θ 2, t�2 Sin�Θ 1� Θ 2� � 2 g lc3 m3 Sin�Θ 1� Θ 2
2

� ,

1

4
4 Τ � I3 � lc32 m3 � 2 l lc3 m3 Cos�Θ 1� Θ 2

2
� � 4 l lc2 m2 Cos�Θ 1� Θ 2� Dt�Θ 1, �t, 2�� �

�4 I2 � I3 � 4 lc22 m2 � lc32 m3� Dt�Θ 2, �t, 2�� � 2 l lc3 m3 Dt�Θ 1, t�2 Sin� Θ 1� Θ 2
2

� �
4 l lc2 m2 Dt�Θ 1, t�2 Sin�Θ 1� Θ 2� � 4 g lc2 m2 Sin�Θ 2� � 2 g lc3 m3 Sin�Θ 1� Θ 2

2
� �

2 compassgait_bisec_equations_simple.nb

In[46]:= temp � Normal�CoefficientArrays�eqnMotion, Dt�dq, t���;�� temp has now two elements: coefficients of Dt�dq,t� and remainder ��
remain1 � temp��1��;
Mfixed � temp��2��;
MatrixForm�Mfixed�
FullSimplify�eqnMotion � remain1 � Mfixed.Dt�dq, t�� �� Should be all 0's ��

Out[48]//MatrixForm=
1

4
�4 I1 � I3 � 4 l2 m1 � 8 l lc1 m1 � 4 lc12 m1 � 4 l2 m2 � 4 l2 m3 � lc32 m3 � 4 l lc3 m3 Cos� Θ 1�Θ 2

2
�� 1

4
�I3 � lc3

1

4
�I3 � lc32 m3 � 2 l lc3 m3 Cos� Θ 1�Θ 2

2
� � 4 l lc2 m2 Cos�Θ 1� Θ 2��

Out[49]= �0, 0�
In[50]:= temp � Normal�CoefficientArrays�remain1, dq, "Symmetric" � True��;

remain2 � temp��1��;
Ctensor � temp��3��;
Cfixed � Ctensor.dq;
MatrixForm�Cfixed�
Simplify�remain1 � remain2 � Cfixed.dq���Should be 0's��

Out[54]//MatrixForm=

�
1

4
l lc3 m3 Dt�Θ 1, t� Sin� Θ 1�Θ 2

2
� � 1

4
l lc3 m3 Dt�Θ 2, t� Sin� Θ 1�Θ 2

2
� 1

4
l lc3 m3 Dt�Θ 1, t� Sin� Θ 1�Θ 2

2
� � Dt�Θ

Dt�Θ 1, t� �� 1

2
l lc3 m3 Sin� Θ 1�Θ 2

2
� � l lc2 m2 Sin�Θ 1� Θ 2��

Out[55]= �0, 0�
In[56]:= Bfixed � ��Coefficient�remain2, Τ��� ;

MatrixForm�Bfixed�
Out[57]//MatrixForm=� 1

�1
�

In[58]:= Gfixed � remain2 � Bfixed.�Τ�;
MatrixForm�Gfixed�

Out[59]//MatrixForm=

�g l m1 Sin�Θ 1� � g lc1 m1 Sin�Θ 1� � g l m2 Sin�Θ 1� � g l m3 Sin�Θ 1� � 1

2
g lc3 m3 Sin� Θ 1�Θ 2

2
�

�g lc2 m2 Sin�Θ 2� � 1

2
g lc3 m3 Sin� Θ 1�Θ 2

2
�

compassgait_bisec_equations_simple.nb 3

